Publication & Preprint
* indicate alphabetical order
-
LLM-ABBA: Understanding time series via symbolic approximation
*Erin Carson, *Xinye Chen, *Cheng Kang, 2024
-
Quantized symbolic time series approximation
*Erin Carson, *Xinye Chen, *Cheng Kang, 2024
-
Mixed precision HODLR matrices
*Erin Carson, *Xinye Chen, *Xiaobo Liu, 2024
-
Computing k-means in mixed precision
*Erin Carson, *Xinye Chen, *Xiaobo Liu, 2024
-
Using Laplace Transform To Optimize the Hallucination of Generation Models
Cheng Kang, Xinye Chen, Novak Daniel, Xujing Yao, 2024
-
fABBA: A Python library for the fast symbolic approximation of time series
*X. Chen and *S. Güttel, 2024
-
Quantized embedding vectors for controllable diffusion language models
C. Kang, X. Chen, Y. Hu, D. Novak, 2024
-
Joint symbolic aggregate approximation of time series
*X. Chen, 2023
-
Fast and exact fixed-radius nearest neighbor search based on sorting
*X. Chen and *S. Güttel, 2022
-
Fast and explainable sorted based clustering
*X. Chen and *S. Güttel, 2022
-
An efficient aggregation method for the symbolic representation of temporal data
*X. Chen and *S. Güttel, 2022
-
Digital-twin-based online parameter personalization for implantable cardiac defibrillators
M. Lai, H. Y, J. Gu, X. Chen and Z. Jiang, 2022
-
A fast sorting-based aggregation method for symbolic time series representation
*X. Chen and *S. Güttel, 2021
-
A comparison of LSTM and GRU networks for learning symbolic sequences
*Roberto Cahuantzi, *X. Chen and *S. Güttel, 2021